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Letter to the Editor

Best Approximation on Convex Sets in a Metric Space

Communicated by E. W. Cheney

In this paper the concepts of strictly convex and uniformly convex normed linear
spaces are extended to metric spaces. A relationship between strictly convex and
uniformly convex metric spaces is established. Certain existence and uniqueness
theorems on best approximation in these spaces as well as in a complete metric
space are proved.

1. INTRODUCTION

The problem of existence and uniqueness of best approximation has been
studied by many investigators. Recent publications, Cheney [1], Singer [2],
Davis [3] and others contain some of the results on the subject. Reference 1
contains the result on the existence of best approximation on a compact set
in a metric space whereas unicity has been proved by taking the space to be a
normed linear space. The existence theorem on an approximatively compact
set in a metric space has been discussed in [2]. The purpose of this paper is to
prove existence and uniqueness theorems on best approximation in a strictly
convex metric space, a uniformly convex metric space, and for an approxi
matively Cauchy set in a complete metric space.

2. STRICTLY CONVEX AND UNIFORMLY CONVEX METRIC SPACES

DEFINITION 1. A strongly convex [4] metric space (X, d) is said to be
strictly convex if

d(x, xo) ~ r, dey, x o) ~ r imply

d(z, xo) < r, unless x = y,

where X o is arbitrary but fixed point of X, z is the midpoint of x and y, and
r is any finite real number.

DEFINITION 2. A strongly convex metric space (X, d) is said to be
uniformly convex if there corresponds to each pair of positive numbers (E, r)
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a positive number 8 such that d(x, y) < E whenever d(x, xo) :::;; dey, xo) :::;;
r < d(z, xo) + 8, z being the midpoint of x and y, and the other points being
arbitrary.

THEOREM 1. (a) Every uniformly convex metric space is strictly convex.

(b) Every compact strictly convex metric space is uniformly
con~'ex.

Proof (a) is an immediate consequence of the above definitions.

(b) Let (X, d) be a strictly convex compact metric space and
E > 0 be given.

Define : S = {<x, y) : d(x, xo) :::;; r, dey, xo) :::;; I" and d(x, y) ;?; E where
x, Y E X and X o is arbitrary fixed point of X}.

It can be shown that S is a closed subset of X X X, the metric on X X X
being

S, being a closed subset of a compact metric space, is compact.
Define ¢ : S ---->- R as

¢«x, y» = r - d(z, xo), where z is the midpoint of x and y.
¢, by the strict convexity of X, is a positive continuous real-valued

function on a compact set S. It attains its positive infimum, say, [j

onS.

Therefore, for <x, y) E S, we have

or, in other words

d(z, xo) > r - 8 implies d(x, y) < E,

which implies that the space is uniformly convex.

3. EXISTENCE AND UNIQUENESS THEOREMS ON BEST ApPROXIMATION

DEFINITION 3. A subset K of a metric space (X, d) is said to be convex if
for any two points x, y, in K any point between them is also in K.

THEOREM 2. An approximatively compact [2] convex set K in a strictly
convex metric sapce (X, d) is Tschebychev [6].

Proof The existence has been discussed in [2]. For uniqueness, if Xl*, X2 *'
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are two points in K of minimum distance, say r, from an arbitrary point, p, of
the space (X, d), then strict convexity of X implies

d(x**,p) < runless x l * = x 2*,

where x** E K is the midpoint of Xl* and x 2*, a contradiction.

COROLLARY 1. A boundedly compact [2] closed convex subset of a strictly
convex metrix space is Tschebychev.

This is a consequence of the fact that in a metric space a boundedly
compact closed set is approximatively compact [2].

THEOREM 3. A compact convex set K in a strictly convex metric space
eX, d) is Tschebychev.

This is a consequence of Theorem 2 and the fact that a compact set in a
metric space is approximatively compact.

COROLLARY 2. A closed convex subset of a strictly convex compact metric
space is Tschebychev.

THEOREM 4. A complete convex set K in a uniformly convex metric space
(X, d) is Tschebychev.

The proof of this theorem is similar to that of Theorem 2.

COROLLARY 3. A closed convex subset of a complete uniformly convex
metric space is Tschebychev.

DEFINITION 4. A set Kin a metric space eX, d) is said to be approximatively
Cauchy's set if every sequence <xn>in K, satisfying.

limn~oo d(xn , xo) = inf{d(x, xo): x E K, Xo is arbitrary fixed point of X}, is a
Cauchy's sequence.

THEOREM 5. A closed approximatively Cauchy's set K in a complete
metric space (X, d) is Tschebychev.

Proof. A closed approximatively Cauchy's set being approximatively
compact, the existence follows from Theorem 2.

The uniqueness can be established by considering the sequence (xn>
defined as

_ jXI *, if n is odd
X n

- iX2 *, if n is even

where x l *, x2* are two points in K of minimum distance from an arbitrary
point p of the space (X, d).
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